The aim of this work is to determine and explain the change in mechanical behaviour due to transients with emphasis on the fracture mechanical response in selected lead-free piezioceramics.
The main goal of the doctoral thesis will be to study the mechanical and fracture behaviour of piezoceramics (for example BTO, BTZC, etc.) during its transition from one state to another, especially in the vicinity of Curie temperature. The sudden change in electrical properties in the area of transients is well studied, but the influence of mechanical characteristics is not reported in detail. The work will focus on lead-free piezoceramics, or on composite systems containing such piezoceramics. The work will use both non-destructive and destructive methods for characterization of elastic, mechanical and fracture characteristics depending on the temperature. From the point of view of the study of microstructure, all available imaging methods (SEM, TEM, AFM, etc.) will be employed. The analysis of microstructural and structural changes during the transit area will be an integral part of the study. Due to the complicated microstructure and its changes, it will be appropriate to support experimental results by modelling.
- M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G.A. Rossetti, J. Rödel, Applied Physics Reviews 4(4) (2017) 041305.
- V. Bijalwan, P. Tofel, J. Erhart, K. Maca, Ceramics International 45(1) (2019) 317-326.
- Q. Hu, X. Wei, Journal of Advanced Dielectrics 09(05) (2019) 1930002.
- Chlup Z., Drdlík D., Hadraba H., Ševeček O., Šiška F., Erhart J., Maca K.: Temperature effect on elastic and fracture behaviour of lead-free piezoceramic BaTiO3. J. Eur. Ceram. Soc. 43 (2023) 1509-1522